Efficiency of different numerical methods for solving Redfield equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficiency of different numerical methods for solving Redfield equations

The numerical efficiency of different schemes for solving the Liouvillevon Neumann equation within multilevel Redfield theory has been studied. Among the tested algorithms are the well-known Runge-Kutta scheme in two different implementations as well as methods especially developed for time propagation: the Short Iterative Arnoldi, Chebyshev and Newtonian propagators. In addition, an implementa...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A numerical algorithm for solving a class of matrix equations

In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$  by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.

متن کامل

A Survey of Numerical Methods for Solving Nonlinear Integral Equations

A survey is given of numerical methods for calculating fixed points of nonlinear integral operators. The emphasis is on general methods, ones that are applicable to a wide variety of nonlinear integral equations. These methods include projection methods (Galerkin and collocation) and Nyström methods. Some of the practical problems related to the implementation of these methods is also discussed...

متن کامل

The Comparison of Numerical Methods for Solving Polynomial Equations

In this paper we compare the Turan process [5]-[6] with the Lehmer-Schur method [2]. We prove that the latter is better. 1. The Algorithms. We first describe the Turan process [5]-[6] which can be considered as an improvement of Graeffe's method. For the complex polynomial (1.1) P0(z)=t «/o*' = ° (fl/o G C, a00an0 * 0), 7=0 the method can be formulated as follows. Let (1.2) Pj(z) = Phx(sfz~)phx...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 2001

ISSN: 0021-9606,1089-7690

DOI: 10.1063/1.1335656